设曲线f(x)=xn+1(n∈N*)在点(1,1)处的切线与x轴的交点的横坐标为xn,则log2010x1+log2010x2+…+log2010x2009的值为( )A. -log20102009B. -1C. ((log20102009)-1D. 1
问题描述:
设曲线f(x)=xn+1(n∈N*)在点(1,1)处的切线与x轴的交点的横坐标为xn,则log2010x1+log2010x2+…+log2010x2009的值为( )
A. -log20102009
B. -1
C. ((log20102009)-1
D. 1
答
设过(1,1)的切线斜率k,f(x)′=(n+1)xn
则k=f(1)′=n+1,切线方程y-1=(n+1)(x-1)
令y=0,可得xn=
n n+1
∴X1•X2…X2009=
•1 2
• …2 3
=2009 2010
1 2010
log2010x1+log2010x2+…+log2010x2009=log2010X1• X2…X2009=log2010
=−11 2010
故选 B
答案解析:由导数的几何意义可求切线的斜率k,写出过(1,1)的切线方程,在切线方程中令f(x)=0,可得xn,然后根据对数的运算法则计算.
考试点:数列的求和;导数的运算.
知识点:本题着重考查了导数的几何意义及过某一定点的切线方程,熟悉对数的运算法则是解决本题的基础;对于这类问题还考查学生对基本知识、基本技能的掌握程度.