矩形ABCD中,E,F,M为AB,BC,CD边上的点,且AB=6,BC=7,AE=3,DM=2,EF⊥FM,则EM的长为( ) A.5 B.52 C.6 D.62
问题描述:
矩形ABCD中,E,F,M为AB,BC,CD边上的点,且AB=6,BC=7,AE=3,DM=2,EF⊥FM,则EM的长为( )
A. 5
B. 5
2
C. 6
D. 6
2
答
过E作EG⊥CD于G,
∵四边形ABCD是矩形,
∴∠A=∠D=90°,
又∵EG⊥CD,
∴∠EGD=90°,
∴四边形AEGD是矩形,
∴AE=DG,EG=AD,
∴EG=AD=BC=7,MG=DG-DM=3-2=1,
∵EF⊥FM,
∴△EFM为直角三角形,
∴在Rt△EGM中,EM=
=
EG2+MG2
=
72+12
=5
50
.
2
故选B.