已知f(x)=log2(1+x^4)-(1+mx)\(1+x^2)(x属于R)是偶函数求函数的单调区间
问题描述:
已知f(x)=log2(1+x^4)-(1+mx)\(1+x^2)(x属于R)是偶函数
求函数的单调区间
答
f(x)=log(1+x^4)-(1+mx)/(1+x^2)
所以,f(-x)=log(1+x^4)-(1-mx)/(1+x^2)
已知f(x)为偶函数,则f(-x)=f(x)
===> log(1+x^4)-(1+mx)/(1+x^2)=log(1+x^4)-(1-mx)/(1+x^2)
===> 1+mx=1-mx
===> 2mx=0
===> m=0
所以,f(x)=log(1+x^4)-[1/(1+x^2)]
因为在x>0上,1+x^4↑,则log(1+x^4)↑;1+x^2↑,则1/(1+x^2)↓,则-1/(1+x^2)↑
所以,在x>0上,f(x)单调递增
而f(x)为偶函数,关于y轴对称
所以,在x≤0上,f(x)单调递减
答
f(x)是偶函数 则f(x)=f(-x)log2(1+x^4)-(1+mx)\(1+x^2)=log2[1+(-x)^4]-(1-mx)\[1+(-x)^2]即1+mx=1-mx在X是任意实数时成立即可,则m=0原函数为 f(x)=log2(1+x^4)-1\(1+x^2)不懂的欢迎追问,如有帮助请采纳,谢谢!