求y=sin(2x-∏/3)-sin2x的单调增区间.
问题描述:
求y=sin(2x-∏/3)-sin2x的单调增区间.
答
y=sin2xcos∏/3-cos2xsin∏/3-sin2x
=-1/2sin2x-cos2xsin∏/3
=-(cos∏/3sin2x+cos2xsin∏/3)
=-sin(2x+∏/3)
单调递增区间∏+2k∏=解得 ∏/3+k∏=
答
y=sin2x*1/2-cos2x*√3/2-sin2x=-(1/2)sin2x-(√3/2)*cos2x=-[(1/2)sin2x+(√3/2)*cos2x]=-√(1/4+3/4)sin(2x+z)=-sin(2x+z)其中tanz=(√3/2)/(1/2)=√3z=π/3-sin(2x+π/3)的增区间即sin(2x+π/3)的减区间sinx的减...