求定积分:∫【π/2 0】sinx/(3+cosx)^2 dx

问题描述:

求定积分:∫【π/2 0】sinx/(3+cosx)^2 dx

∫(0 pai/2) 1/(3+cosx)^2d(-cosx)
=∫(0 1) 1/(3+t)^2dt
=∫(0 1) 1/(3+t)^2d(3+t)
=-1/(3+t)|(0 1)
=1/12

换元,令t=cosx

(cosx)'=-sinx所以:
∫[π/2 0]sinx/(3+cosx)^2 dx
=-∫[π/2 0]1/(3+cosx)^2d(cosx)
=[1/(3+cosx)][π/2 0]
=1/3-1/4
=1/12