已知cos(π/2-α)-sin(π/2+α)=1/5,且0<α<π,求下列各式的值:(1)sin(π+α)cos(π+α);;(2)sin(3π/2-α)+cos(3π/2-α);;(3)cos3^(3π/2+α)-sin^3(3π/2+α)

问题描述:

已知cos(π/2-α)-sin(π/2+α)=1/5,且0<α<π,求下列各式的值:
(1)sin(π+α)cos(π+α);;(2)sin(3π/2-α)+cos(3π/2-α);;
(3)cos3^(3π/2+α)-sin^3(3π/2+α)

cos(π/2-α)-sin(π/2+α)=1/5,
sinα-cosα=1/5,
两边平方,
1-sin2α=1/25,
sin2α=24/25>0,
故0<2α<π,
0<α<π/2,,
sinα>cosα,
则sinα+cosα>0,
(1)sin(π+α)cos(π+α)=-sinα*(-cosα)=(1/2)sin2α
=(1/2)*24/25=12/25.
(2)sin(3π/2-α)+cos(3π/2-α)
= sin(π+π/2-α)+cos(π+π/2-α)
=-sin(π/2-α)-cos(π/2-α)
=-cosα-sinα
=-(sinα+cosα)
=-√(sinα+cosα)^2
=-√(1+sin2α)
=-√(1+24/25)
=-7/5.
(前面已说明sinα+cosα>0)
(3)、cos^3(3π/2+α)-sin^3(3π/2+α)
=[cos(2π-3π/2-α)]^3-[-sin(2π-3π/2-α)]^3
=[cos(π/2-α)]^3-[-sin(π/2-α)]^3
=(sinα)^3+(cosα)^3
=(sinα+ cosα)*[( sinα)^2- sinα* cosα+( cosα)^2]
=(7/5)*[1-12/25]
=(7/5)*13/25
=91/125.

cos(π/2-α)-sin(π/2+α)=sina-cosa=1/5 ①两边平方得:1-2sinacosa=1/25 sinacosa=12/25 ∴sin^2 a+cos^2 a=(sina+cosa)^2-2sinacosa =(sina+cosa)^2-24/25 ...