已知sinx+cosx=1/5,且0<x<π.求sin^3*x -cos^3*x的值
已知sinx+cosx=1/5,且0<x<π.求sin^3*x -cos^3*x的值
sin3x+cos3x=1/5
sin^3(x)+cos^3(x)=91/125
sinx+cosx=1/5
(sinx+cosx)^2 =1/25
sin^2*x + 2 sinx cosx + cos^2*x =1/25
1 + 2 sinx cosx =1/25
sinx cosx = -12/25
sin^3*x -cos^3*x
= (sinx - cosx) (sin^2*x + sinx*cosx + cos^2*x)
= (sinx - cosx) (1 + sinx*cosx )
= (sinx - cosx) (13/25)
= (13/25)√(sinx - cosx)^2
= (13/25)√{sin^2(x) - 2 sinx cosx + cos^2(x) }
= (13/25)√(1 - 2 sinx cosx )
= (13/25)√(49/25)
= 91/125
因为sinx+cosx=1/5,所以(sinx+cosx)^2=1/25,所以sinx*cosx=-12/25,所以x》90°,sin^3*x -cos^3*x=(sinx-cosx)*(sinx^2+sinx*cosx+cosx^2)=根号(sinx-cosx)^2*(sinx^2+sinx*cosx+cosx^2)=根号(1-2*sinx*cosx)*(sinx^2+sinx*cosx+cosx^2)=7/5*13/25=91/125
-53/125
(sinx+cosx)^2=1+2sinxcosx=1/25 2sinxcosx=-24/25 π/2