设A和B分别是方程cos(sinx)=x,sin(cosx)=x在区间(0,pi/2)上的解,则它们的大小关系是麻烦详细点

问题描述:

设A和B分别是方程cos(sinx)=x,sin(cosx)=x在区间(0,pi/2)上的解,则它们的大小关系是
麻烦详细点

对同一个x,sin(cosx)B

cos(sinx)=x,变形可以得到:
sin(∏/2-sinx)=x,现在要比较其与
sin(cosx)=x的大小,即需要比较
∏/2-sinx 和 cosx的大小
假设有:
∏/2-sinx- cosx〉0
可以得到:
∏/2〉sinx+cosx>=(2开根号),两边同乘2,
∏〉3>(8开根号)
所以假设成立,
所以:
A>B