已知向量a=(根号3,1)向量b=(sina-m cosa)
问题描述:
已知向量a=(根号3,1)向量b=(sina-m cosa)
已知向量a=(根号3,1),b=(sina-m,cosa),切a//b,且a属于(0,2派)则实数m的最小值为?(2)若a平衡b且m=0求cos(派/2-a)*sin(派+2a)/cos(派-a)的值
答
∵a∥b,∴√3cosa-sina+m=0,∴m=sina-√3cosa=2sin(a-π/3)
∵a∈(0,π/2),∴a-π/3∈(-π/3,π/6),∴sin(a-π/3)∈(-√3/2,1/2)
∴m∈(-√3,1),故最小值不存在.
(2)∵a∥b,且m=0,∴sin(a-π/3)=0,∴a=π/3
∴cos(π/2-a)*sin(π+2a)/cos(π-a)
=sina*(-sin2a)/(-cosa)
=2sin²a*cosa/cosa
=2sin²a
=2×(√3/2)²
=3/2