一道高数证明题设f(x)在[0,π]上连续,在(0,π)内可导,求证存在ξ∈(0,π),使f'(ξ)=-f(ξ)cotξ

问题描述:

一道高数证明题
设f(x)在[0,π]上连续,在(0,π)内可导,求证存在ξ∈(0,π),使f'(ξ)=-f(ξ)cotξ

令F(x)=sinxf(x)
F(0)=0 F(π)=0
且f(x)在[0,π]上连续,在(0,π)内可导,满足洛尔定理,因而必有一点ξ
使得F(ξ )=cosξ f(ξ )+f'(ξ)sinξ=0
即有f'(ξ)=-f(ξ)cotξ