因式分解法解方程4(x-2)2-25(x+3)2
问题描述:
因式分解法解方程4(x-2)2-25(x+3)2
答
4(x-2)^2-25(x+3)^2
=(2x-4)^-(5x+15)^2
=(2x-4+5x+15)(2x-4-5x-15)
=(7x+11)(-3x-19)
=-(7x+11)(3x+19)
答
4(x-2)^2-25(x+3)^2
=[2(x-2)]^2-[5(x+3)]^2
=[2(x-2)-5(x+3)][2(x-2)+5(x+3)]
=(2x-4-5x-15)(2x-4+5x+15)
=(-3x-19)(7x+11)
=-(3x+19)(7x+11)
答
4(x-2)^2-25(x+3)^2
=[2(x-2)]^2-[5(x+3)]^2
=[(2x-4)+5(x+3)][(2(x-2)-(5(x+3)]
=-(7x+11)(3x+19)
答
4(x-2)^2-25(x+3)^2
=(2x-4)^-(5x+15)^2
=(2x-4+5x+15)(2x-4-5x-15)
=(7x+11)(-3x-19)
=-(7x+11)(3x+19)
答
[2(x-2)]2-[5(x+3)]2
=(2x-4)2-(5x+15)2
=(2x-4+5x+15)(2x-4-5x-15)
=(7x+11)(-3x-19)
=-(7x+11)(3x+19)=0
x=-11/7,x=-19/3