已知cos2α/[(cosα+sinα)^2]=1/2,求tanα
问题描述:
已知cos2α/[(cosα+sinα)^2]=1/2,求tanα
答
^2+(sinα)^2]/sinαcosα=2(sinα)^2/sinαcosα=1 tanα=0.5 tan(2α-β)=tan(α+α-β)=[tanα+tan(α-β)]/[1-tanαtan
答
将cos2α该写成(cosα)^2-(sinα)^2
[(cosα)^2-(sinα)^2]/[(cosα+sinα)^2]=1/2
(cosα-sinα)/(cosα+sinα)=1/2
(1-tanα)/(1+tanα)=1/2
解得:tanα=1/3
答
cos2α/[(cosα+sinα)^2]
=(cosα-sinα)/(cosα+sinα)
=(1-tanα)/(1+tanα)
=1/2
解得tanα=1/3