已知二次函数f(x)=mx2+(m-3)x+1,对于任意实数x,恒有f(x)≤f(m)(m为常数),求m的值.

问题描述:

已知二次函数f(x)=mx2+(m-3)x+1,对于任意实数x,恒有f(x)≤f(m)(m为常数),求m的值.

由于f(x)有最大值 故M

3

依题意知,m≠0,
∵对于任意实数x,恒有f(x)≤f(m),
∴函数f(x)存在最大值,且最大值为f(m),
∴m<0,
又当x=

m−3
2m
时,函数f(x)=mx2+(m-3)x+1取最大值,
m−3
2m
=m,
解得:m=
3
2
,或m=1(舍去),
故m的值为
3
2

答案解析:由已知二次函数f(x)=mx2+(m-3)x+1,对于任意实数x,恒有f(x)≤f(m),可得f(m)为函数的最大值,故m<0且
m−3
2m
=m,解方程可得答案.
考试点:二次函数的性质.
知识点:本题考查的知识点是二次函数的图象和性质,其中根据已知分析出f(m)为函数的最大值,进而根据二次函数的图象和性质构造方程组,是解答的关键.