dx/(3-5x)^2不定积分 用换元法

问题描述:

dx/(3-5x)^2不定积分 用换元法

令3-5x=t
dx=-1/5dt
∫1/(3-5x)²dx
=-0.2∫1/t²dt
=-0.2×(-1/t)+C
=1/(5t)+C
=1/(15-25x)+C

令3-5x=t
dx=-1/5dt
∫1/(3/5x)^2dx
=-1/5∫1/t^2dt
=-1/5*(-1/t)
=1/5t

∫1/(3-5x)^2dx
t=3-5x x=(3-t)/5
∫1/(3-5x)^2dx
=∫1/t^2d(3-t)/5
=-1/5∫1/t^2dt
=1/5*1/t+C
=1/[5(3-5x)]+C