已知:如图,在Rt△ABC和Rt△BAD中,AB为斜边,AC=BD,BC,AD相交于点E. (1)求证:AE=BE; (2)若∠AEC=45°,AC=1,求CE的长.
问题描述:
已知:如图,在Rt△ABC和Rt△BAD中,AB为斜边,AC=BD,BC,AD相交于点E.
(1)求证:AE=BE;
(2)若∠AEC=45°,AC=1,求CE的长.
答
(1)证明:∵∠AEC与∠BED是对顶角,
∴∠AEC=∠BED,
在△ACE和△BDE中,
∠AEC=∠BED ∠C=∠D=90° AC=BD
∴△ACE≌△BDE(AAS),(3分)
∴AE=BE;(4分)
(2)∵∠AEC=45°,∠C=90°,
∴∠CAE=45°,(5分)
∴CE=AC=1.(7分)