如图,三角形ABC中,AB=AC,AD、AE分别是∠BAC和∠BAC外角的平分线,BE垂直AE(1)求证:DA垂直AE(2)试判断AB与DE是否相等,并证明你的结论.
问题描述:
如图,三角形ABC中,AB=AC,AD、AE分别是∠BAC和∠BAC外角的平分线,BE垂直AE(1)求证:DA垂直AE(2)试判断AB与DE是否相等,并证明你的结论.
答
1、证明:在CA的延长线上取点F∵AD平分∠BAC∴∠BAD=∠BAC/2∵AE平分∠BAF∴∠BAE=∠BAF/2∵∠BAC+∠BAF=180∴∠BAD+∠BAE=∠BAC/2+∠BAF/2=(∠BAC+∠BAF)/2=180/2=90∴∠DAE=90∴DA⊥AE2、AB=DE证明:∵...