设α_1,α_2,α_3,⋯,α_m是其次线性方程组Ax=0的基础解系,β是非齐次线性方程组Ax=b设,〖α_(1,) α〗_2,α_3,⋯,α_m是其次线性方程组Ax=0的基础解系,β是非齐次线性方程组Ax=b(b≠0)的一个特解,证明向量组α_1+β,α_2+β,⋯,α_m+β,β线性无关.“_”是指下标,设α_1,α_2,α_3,⋯,α_m是其次线性方程组Ax=0的基础解系,β是非齐次线性方程组Ax=b(b≠0)的一个特解,证明向量组α_1+β,α_2+β,⋯,α_m+β,β线性无关。

问题描述:

设α_1,α_2,α_3,⋯,α_m是其次线性方程组Ax=0的基础解系,β是非齐次线性方程组Ax=b
设,〖α_(1,) α〗_2,α_3,⋯,α_m是其次线性方程组Ax=0的基础解系,β是非齐次线性方程组Ax=b(b≠0)的一个特解,证明向量组α_1+β,α_2+β,⋯,α_m+β,β线性无关.“_”是指下标,
设α_1,α_2,α_3,⋯,α_m是其次线性方程组Ax=0的基础解系,β是非齐次线性方程组Ax=b(b≠0)的一个特解,证明向量组α_1+β,α_2+β,⋯,α_m+β,β线性无关。

证明:设 k1(α1+β)+k2(α2+β)+⋯+km(αm+β)+kβ = 0
则 k1α1+k2α2+⋯+kmαm+ (k1+k2+...+km+k)β = 0.
等式两边左乘A,由已知Aαi=0,Aβ=b得
(k1+k2+...+km+k)b = 0
因为 b≠0,所以 k1+k2+...+km+k = 0
所以 k1α1+k2α2+⋯+kmαm = 0
由于 α1,α2,α3,⋯,αm 线性无关
所以 k1=k2=...=km=0
再由 k1+k2+...+km+k = 0 得 k = 0.
故 向量组α1+β,α2+β,⋯,αm+β,β线性无关.