求证:任意正实数abc,a/根号(a^2+b^2)+b/根号(c^2+b^2)+c/根号(c^2+a^2)>1
问题描述:
求证:任意正实数abc,a/根号(a^2+b^2)+b/根号(c^2+b^2)+c/根号(c^2+a^2)>1
答
a,b,c大于0,故a/√(a^2+b^2)大于a/√(a^2+b^2+c^2),
a/√(a^2+b^2+c^2)在空间中代表了1在某方向的投影
由于两点之间直线最短,∑a/√(a^2+b^2+c^2)≥1,
故∑a/√(a^2+b^2)>∑a/√(a^2+b^2+c^2)≥1.