设数列{an}的通项公式an=n·2^(n-1)求数列前n项和Sn(用错位相减法最好)

问题描述:

设数列{an}的通项公式an=n·2^(n-1)求数列前n项和Sn(用错位相减法最好)

Sn= 1*2^0 +2*2^1 +3*2^2 +4*2^3 +...+n*2^(n-1)
2Sn= 1*2^1 +2*2^2 +3*2^3 +4*2^4 +...+n*2^n
所以 2Sn-Sn= -1*2^0 +(1-2)*2^1 +(2-3)*2^2 +(3-4)*2^3 +...+(n-1-n)*2^(n-1) +n*2^n
所以 Sn= -1 -[2^1 +2^2 +2^3 +...+2^(n-1)] +n*2^n
=n*2^n -1 +2 -2^n
=(n-1)*2^n +1