求极限lim(x→2) [√(x+2)-2]/√[(x+7)-3]= 求极限lim(x→0)[(1+mx)^n-(1+nx)^m]/x^2=求极限lim(x→无穷){1/(2!)+2/(3!)+……+n/[(n+1)!]}=3/2 1/2mn(n-m) 1

问题描述:

求极限lim(x→2) [√(x+2)-2]/√[(x+7)-3]= 求极限lim(x→0)[(1+mx)^n-(1+nx)^m]/x^2=
求极限lim(x→无穷){1/(2!)+2/(3!)+……+n/[(n+1)!]}=
3/2 1/2mn(n-m) 1