若S=11×3+13×5+…+1(2n-1)(2n+1),则S=______.

问题描述:

若S=

1
1×3
+
1
3×5
+…+
1
(2n-1)(2n+1)
,则S=______.

1
(2n-1)(2n+1)
=
1
2
1
2n-1
-
1
2n+1

∴S=
1
1×3
+
1
3×5
+…+
1
(2n-1)(2n+1)
=
1
2
(1-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1
)=
1
2
(1-
1
2n+1

∴S=
n
2n+1

故答案为:
n
2n+1

答案解析:利用裂项法,即可求出数列的和.
考试点:数列的求和.
知识点:本题考查数列求和,考查裂项法的运用,属于中档题.