已知数列{an}中,a1=12,an+1=an+14n2−1,则an=______.
问题描述:
已知数列{an}中,a1=
,an+1=an+1 2
,则an=______. 1 4n2−1
答
∵a1=
,an+1=an+1 2
1 4n2−1
∴an+1−an=
=1 (2n−1)(2n+1)
(1 2
−1 2n−1
)1 2n+1
∴a2−a1=
(1−1 2
)1 3
a3−a2=
(1 2
−1 3
)1 5
…
an−an−1=
(1 2
−1 2n−3
)1 2n−1
以上n-1个式子相加可得,an−a1=
(1−1 2
)=1 2n−1
2n−2 4n−2
∵a1=
1 2
∴an=
+2n−2 4n−2
=1 2
4n−3 4n−2
故答案为:
4n−3 4n−2
答案解析:由已知可得,an+1−an=
=1 (2n−1)(2n+1)
(1 2
−1 2n−1
),然后利用累计法可求通项1 2n+1
考试点:数列递推式.
知识点:本题主要考查了利用裂项及累计法求解数列的通项,解题的关键 是对递推公式的变形an+1−an=
=1 (2n−1)(2n+1)
(1 2
−1 2n−1
)1 2n+1