已知数列{an}中,a1=12,an+1=an+14n2−1,则an=______.

问题描述:

已知数列{an}中,a1

1
2
an+1an+
1
4n2−1
,则an=______.

a1

1
2
an+1an+
1
4n2−1

an+1an
1
(2n−1)(2n+1)
=
1
2
(
1
2n−1
1
2n+1
)

a2a1
1
2
(1−
1
3
)

a3a2
1
2
(
1
3
1
5
)


anan−1
1
2
(
1
2n−3
1
2n−1
)

以上n-1个式子相加可得,ana1
1
2
(1−
1
2n−1
)=
2n−2
4n−2

a1
1
2

∴an=
2n−2
4n−2
+
1
2
=
4n−3
4n−2

故答案为:
4n−3
4n−2

答案解析:由已知可得,an+1an
1
(2n−1)(2n+1)
=
1
2
(
1
2n−1
1
2n+1
)
,然后利用累计法可求通项
考试点:数列递推式.
知识点:本题主要考查了利用裂项及累计法求解数列的通项,解题的关键 是对递推公式的变形an+1an
1
(2n−1)(2n+1)
=
1
2
(
1
2n−1
1
2n+1
)