ln(1+n)的泰勒级数如何展开?特急!

问题描述:

ln(1+n)的泰勒级数如何展开?特急!

令f(x)=ln(1+x),则 f(x)的k阶导数为fk(x)=(k-1)!(-1)^(k+1)/(1+x)^k; (k-1)的阶乘,乘以-1的k+1次方,除以(1+x)的k次方 f(x)=f(x0)+∑fk(x0)(x-x0)^k/k!(k=1,2,3……)x0可取f(x)定义域内的任意数,根据需要选择.如x0...