已知,如图,△ABC是等边三角形,点D、E分别在CB、AC的延长线上,∠ADE=60°.求证:△ABD∽△DCE.

问题描述:

已知,如图,△ABC是等边三角形,点D、E分别在CB、AC的延长线上,∠ADE=60°.
求证:△ABD∽△DCE.

证明:∵∠ABC=∠ACB=60°,
∴∠ABD=∠ECD=120°,
又∵∠ADB+∠DAB=∠ABC=60°,
∠ADB+∠EDC=60°,
∴∠DAB=∠EDC,
∴△ABD∽△DCE.
答案解析:两个三角形中如果两组角对应相等,那么这两个三角形互为相似三角形.从而可证明本题.
考试点:相似三角形的判定;等边三角形的性质.
知识点:本题考查相似三角形的判定定理,关键知道两个三角形中如果两组角对应相等,那么这两个三角形互为相似三角形.