观察下列运算并填空:1×2×3×4+1=25=52;2×3×4×5+1=121=112:3×4×5×6+1=361=192;…根据以上结果,猜想并研究:(n+1)(n+2)(n+3)(n+4)+1=______.

问题描述:

观察下列运算并填空:
1×2×3×4+1=25=52
2×3×4×5+1=121=112
3×4×5×6+1=361=192;…
根据以上结果,猜想并研究:(n+1)(n+2)(n+3)(n+4)+1=______.

由1×2×3×4+1=25=52=(02+5×0+5)2;2×3×4×5+1=121=112=(12+5×1+5)2;3×4×5×6+1=361=192=(22+5×2+5)2,…观察发现:(n+1)(n+2)(n+3)(n+4)+1=(n2+5n+5)2.证明:等式左边=(n+1)(n+2)(n...
答案解析:先根据题中的一系列等式,把5的平方,11的平方以及19的平方变形后,归纳猜想得到所求式子的化简结果,然后进行证明,方法是利用多项式的乘法法则把等式的左边化简,合并后,把平方项的系数拆为10+25,然后利用完全平方公式化简后,即可得到与等式的右边相等.
考试点:整式的混合运算.
知识点:此题考查学生根据已有的等式归纳总结,得出一般性规律的能力,是一道中档题.