关于x的一元二次方程mx²+2x+1=0有两个实数根,则实数m的取值范围是

问题描述:

关于x的一元二次方程mx²+2x+1=0有两个实数根,则实数m的取值范围是

吊塔=4-4m>=0
m一元二次方程
m不等于0
m的取值范围是(-无穷,0)并(0,1]

判别式法:
4 - 4m>=0
m当m = 1时两实数根相等,当m

一元二次方程mx²+2x+1=0有两个实数根,
所以m≠0,△=2²-4m≥0
解得m≤1,且m≠0

有两个实数根
所以△=4-4m>=0
m有两个实数根则是一元二次方程
所以m≤1且m≠0