如图,在△ABC中,AB=AC,∠A=120°,AB的中垂线分别交BC,AB于点M,N.求证:CM=2BM.(图自己画吧)

问题描述:

如图,在△ABC中,AB=AC,∠A=120°,AB的中垂线分别交BC,AB于点M,N.求证:CM=2BM.(图自己画吧)

∵MN垂直平分AB,
∴BM=MA
∵∠A=120°,AB=AC
∴∠B=30°=∠C=∠MAN
∴∠MAC=90°
∴2MA=CM
∴CM=2BM

连接AM,由于MN是AB的中垂线,因此,BM=AM,角BAM=角B且因AB=AC,角B=角C=(180-120)/2度=30度,故角MAC=(120-30)度=90度。在直角三角形MAC中利用角MAC=30度得,CM=2AM.因此,CM=2BM.

证明:连接AM. 因为∠A=120°,AB=AC 所以:∠C=30° 所以:∠B=30° 又因为:AB的垂直平分线MN分别交BC、AB于M、N 所以:∠MAB=30°BM=AM 所以:∠CMA=60° 又因为:∠C=30° ...