已知:如图,D是△ABC的边BC上一点,F是AD上一点,BF交AC于E,若BD:DC=2:3,AF:FD=5:4,求AE/EC和BF/FE的值
问题描述:
已知:如图,D是△ABC的边BC上一点,F是AD上一点,BF交AC于E,若BD:DC=2:3,AF:FD=5:4,求AE/EC和BF/FE的值
答
过F点做FN//AC交BC与N点则FN/AC=4/9=DN/DC设BD=2x 则DC=3x 那么DN=4/9*3x=4x/3在三角形BEC中 FN/EC=BN/BC={2x+4x/3}/5x=2/3=BF/BE 所以BF/FE=2所以(FN/AC)/(FN/EC)=Ac/EC=3/2 所以AE/EC=1/2...