已知函数f(x)=13ax3-bx2+(2-b)x+1在x=x1处取得极大值,在x=x2处取得极小值,且0<x1<1<x2<2.(1)证明a>0;(2)若z=a+2b,求z的取值范围.
问题描述:
已知函数f(x)=
ax3-bx2+(2-b)x+1在x=x1处取得极大值,在x=x2处取得极小值,且0<x1<1<x2<2.1 3
(1)证明a>0;
(2)若z=a+2b,求z的取值范围.
答
答案解析:(1)求出f(x)的导函数,因为函数在x=x1和x=x2取得极值得到:x1,x2是导函数等于0的两个根.表示出导函数,因为x<x1函数为增函数,得到导函数大于0,根据不等式取解集的方法即可得到a的范围;
(2)由0<x1<1<x2<2得到导函数在x=0、2时大于0,导函数在x=1时小于0,得到如图所示的三角形ABC,求出三个顶点的坐标即可得到相应的z值,得到z的取值范围即可.
考试点:利用导数研究函数的极值;简单线性规划.
知识点:本题考查学生会利用导数研究函数的极值,会利用数形结合法进行简单的线性规划.在解题时学生应注意利用数形结合的数学思想解决问题.