函数f(x)在x=x0处可导则连续,但若f(x)在x=x0处左右导数都存在但不相等,如何具体证明其在x=x0处也连续.
问题描述:
函数f(x)在x=x0处可导则连续,但若f(x)在x=x0处左右导数都存在但不相等,如何具体证明其在x=x0处也连续.
答
这样就不连续了
答
连续的证明不是用导数来证明的,而是根据
极限limf(x)=f(x0) (x趋向x0)来证明的
比如f(x)=|x|
左导数=-1,右导数=1不相等,但
证连续只要
看lim|x|是否为0即可!
答
设右导数f'(x0)=lim(h→0+)[f(x0+h)-f(x0)]/h=a
则[lim(h→0+)f(x0+h)-f(x0)]/lim(h→0+)h=a
∵lim(h→0+)h=0
∴lim(h→0+)f(x0+h)-f(x0)=0
lim(h→0+)f(x0+h)=x0
即f(x)在x0处右极限为f(x0)
同理
设左导数为f'(x0)=lim(h→0-)[f(x0+h)-f(x0)]/h=b
则lim(h→0-)f(x0+h)-f(x0)=0
f(x)在x0处左极限为f(x0)
f(x)在x0出左右极限存在切相等,所以在x0处连续
答
证明连续就要证明左极限等于右极限即可