导函数定义如何理解导函数定义 设函数y=f(x)在点x0的某个邻域N(x0,δ)内有定义,当自变量x在x0处有增量△x(设x0+△x∈N(x0,δ)),函数y=f(x)相应的增量为△y=f(x0+△x)-f(x0). 如果当△x→0时,函数的增量△y与自变量的增量△x之比的极限lim △y/△x=lim [f(x0+△x)-f(x0)]/△x存在,则称这个极限值为f(x)在x0处的导数或变化率.通常可以记为f'(x0)或f'(x)|x=x0.
问题描述:
导函数定义如何理解
导函数定义
设函数y=f(x)在点x0的某个邻域N(x0,δ)内有定义,当自变量x在x0处有增量△x(设x0+△x∈N(x0,δ)),函数y=f(x)相应的增量为△y=f(x0+△x)-f(x0). 如果当△x→0时,函数的增量△y与自变量的增量△x之比的极限lim △y/△x=lim [f(x0+△x)-f(x0)]/△x存在,则称这个极限值为f(x)在x0处的导数或变化率.通常可以记为f'(x0)或f'(x)|x=x0.
答
导数就是曲线的切线的斜率。
答
就是△y/△x
但是△x→0时的比值
lim △y/△x=lim [f(x0+△x)-f(x0)]/△x
答
打个比方,x表示时间,y表示你的钱,函数y=f(x)表示你的钱与你的时间的关系导数表示在某个时间点,你赚(导数大于0)赔(导数小于0)钱的速度.这个导数(速度)就是用你在x处,单位时间△x内赚(赔)的钱△y的比值△y/△x...