求微分方程 dy/dx=(x+y)^2dy/dx=(x+y)的平方求通解..1/2ln[(1+x-y)/(1-x+y)]=x+C

问题描述:

求微分方程 dy/dx=(x+y)^2
dy/dx=(x+y)的平方
求通解..
1/2ln[(1+x-y)/(1-x+y)]=x+C

印错了吧,dy/dx = (x-y)²的通解才是1/2ln[(1+x-y)/(1-x+y)]=x+C
令x-y = u
则du = dx-dy
dy = dx-du
dy/dx = 1 - du/dx = (x-y)² = u²
du/dx = 1 - u²
dx = du/(1-u²) = du/2(1-u) + du/2(1+u)
两边积分得
x + C = 1/2 * [-ln(1-u)] + 1/2 * ln(1+u)
即1/2 * ln[(1+u)/(1-u)] = x + C
把u = x-y代入得通解为
1/2 * ln[(1+x-y)/(1-x+y)] = x + C

变换u=x+y,v=x-y,则
x=(u+v)/2,y=(u-v)/2
dx=(du+dv)/2,dy=(du-dv)/2
dy/dx=(du-dv)/(du+dv)=u^2
整理得dv/du=(1-u^2)/(1+u^2)=2/(1+u^2)-1
v=2arctan(1+u^2)-u+C
剩下自己解吧

变换u=x+y,则y'=u'-1,方程化为u'-1=u^2,分离变量:du/(1+u^2)=dx,两边积分:arctanu=x+C,所以u=tan(x+C),所以y=tan(x+C)-x