怎样证明椭圆上的点到两焦点的距离之和等于2a

问题描述:

怎样证明椭圆上的点到两焦点的距离之和等于2a

|PF1|=a+ex0 |PF2|=a-ex0 |PF1|+|PF2|=2a
你这是要证明焦半径公式?

椭圆公式: x^2/a^2 + y^2/b^2 = 1 (a>b>0)
两焦点( -a , 0 ) ( a , 0 )
设(x,y)是椭圆上的点,有:
根号[(x+a)^2 + y^2] + 根号[ (x-a)^2 + y^2 ] = 椭圆上的点到两焦点的距离之和, 定义是2a, 我们直接代入验证即可
平方有:
(x+a)^2 + y^2 + (x-a)^2 + y^2 +
2根号[(x^2 - a^2 )^2 + y^4 + y^2 ×【(x+a)^2 +(x-a)^2】]
= 2x^2 + 2y^2 + 2a^2 +
2根号[(x^2 - a^2 )^2 + y^4 + y^2 ×【2x^2 + 2a^2】] = 4a^2
移项有:
2x^2 + 2y^2 - 2a^2 =
2根号[(x^2 - a^2 )^2 + y^4 + y^2 ×【2x^2 + 2a^2】]
两边平方:
4x^4 + 4y^4 + 4a^4 + 8x^2×y^2 - 8x^2×a^2 - 8y^2×a^2=
4x^4 - 8a^2×x^2 + 4a^4 + 4y^4 + 8y^2×x^2 + 8y^2×a^2
显然上式成立,所以距离之和为2a