根号下a^+(1/a^ )-根号2大于等于a+(1/a ) -2

问题描述:

根号下a^+(1/a^ )-根号2大于等于a+(1/a ) -2

设t=a+1/a,则此不等式就是要证明√(t²-2)-√2≥t-2,即证2-√2≥t-√(t²-2)。
1、若t≤0,则此不等式恒成立;
2、若t>0,则考虑到a+1/a≥2有t≥2。对要证明的不等式分子有理化,即证:2/[2+√2]≥2/[t+√(t²-2),就是要证明:2+√2≤t+√(t²-2)。设f(t)=t+√(t²-2),则函数f(t)在区间[2,+∞)上是递增的,因t≥2,则f(t)的最小值是f(2)=2+√(2²-2)=2+√2,即有f(t)≥2+√2。
从而有:√(a²+1/a²)-√2≥a+1/a-2。
看懂了吗?有点乱,呵呵

设t=a+1/a,则此不等式就是要证明√(t²-2)-√2≥t-2,即证2-√2≥t-√(t²-2).1、若t≤0,则此不等式恒成立;2、若t>0,则考虑到a+1/a≥2有t≥2.对要证明的不等式分子有理化,即证:2/[2+√2]≥2/[t+...