答
(1)假如点M(m,-2)在该抛物线上,
∴-2=m2-4m+3,
∴m2-4m+5=0,
∴△=(-4)2-4×1×5=-4<0,
∴此方程无实数解,
∴点M(m,-2)不会在该抛物线上;
(2)过点C作CH⊥x轴,交x轴与点H,连接CA、CB,
如图,当y=0时,x2-4x+3=0,x1=1,x2=3,由于点A在点B左侧,
∴A(1,0),B(3,0)
∴OA=1,OB=3,
∴AB=2
∵y=x2-4x+3
∴y=(x-2)2-1,
∴C(2,-1),
∴AH=BH=CH=1
在Rt△AHC和Rt△BHC中,由勾股定理得,
AC=,BC=,
∴AC2+BC2=AB2,
∴△ABC是等腰直角三角形;
(3)存在这样的点P.
根据对角线互相平分的四边形是平行四边形,因此连接点P与点C的线段应被x轴平分,
∴点P的纵坐标是1,
∵点P在抛物线y=x2-4x+3上,
∴当y=1时,即x2-4x+3=1,解得x1=2-,x2=2+,
∴点P的坐标是(2-,1)或(2+,1).
答案解析:(1)假如点M(m,-2)在该抛物线上,则-2=m2-4m+3,通过变形为:m2-4m+5=0,由根的判别式就可以得出结论.
(2)如图,根据抛物线的解析式求出点C的坐标,再利用勾股定理求出AB、AC和BC的值,由勾股定理的逆定理就可以得出结论.
(3)假设存在点P,根据对角线互相平分的四边形是平行四边形,因此连接点P与点C的线段应被x轴平分,就可以求得P点的纵坐标为1,代入抛物线的解析式就可以求出P点的横坐标.
考试点:二次函数综合题;二次函数图象上点的坐标特征;等腰直角三角形;平行四边形的判定.
知识点:本题是一道二次函数的综合试题,考查了二次函数图象上点的坐标特征,勾股定理的逆定理的运用,根的判别式的使用,平行四边形的判定及性质.