等腰三角形ABC,AB=AC,角BAC=120度,P为BC的中点,小慧拿着含30度角的透明三角板,使30度的顶点落在点P,那第3题2小题呢

问题描述:

等腰三角形ABC,AB=AC,角BAC=120度,P为BC的中点,小慧拿着含30度角的透明三角板,使30度的顶点落在点P,
那第3题2小题呢

1)证明:在△ABC中,∠BAC=120°,AB=AC,所以∠B=∠C=30°,
 因为∠B+∠BPE+∠BEP=180° 所以∠BPE+∠BEP=150°
因为∠EPF=30°、 ∠BPE+∠EPF+∠CPF=180°
所以∠BPE+∠CPF=150°
所以∠BEP=∠CPF       
所以△BPE∽△CFP                
(2)①△BPE∽△CFP
②△BPE与△PFE相似。         
下面证明结论
同(1)可证△BPE∽△CFP得CP:BE=PF:PE ,而CP=BP
因此BP:BE=PF:PE ,          
又因为∠EBP=∠EPF,
所以△BPE∽△PFE

不晓得,你问老师或同学呗!

1)证明:在△ABC中,∠BAC=120°,AB=AC,所以∠B=∠C=30°, 因为∠B+∠BPE+∠BEP=180° 所以∠BPE+∠BEP=150°因为∠EPF=30°,又因为 ∠BPE+∠EPF+∠CPF=180°所以∠BPE+∠CPF=150°所以∠BEP=∠CPF        ...

你题目中P应该是BC中点吧。因为∠BPE ∠B ∠BEP=180度 (其中∠B=30度) ∠BPE ∠EPC=∠BPE ∠EPF ∠CPF=180度 (其中∠EPF=30度)所以∠BEP=