设函数f(x)=ax^3+3/2(2a-1)x^2-6x (a∈R),若函数f(x)在区间(-∞,-3)是增函数,求实数a的取值范围?

问题描述:

设函数f(x)=ax^3+3/2(2a-1)x^2-6x (a∈R),若函数f(x)在区间(-∞,-3)是增函数,求实数a的取值范围?

f(x)=ax^3+(3/2)(2a-1)x^2-6x则,f'(x)=3ax^2+3(2a-1)x-6=3[ax^2+(2a-1)x-2]=3(ax-1)(x+2)(i)当a=0时,f'(x)=-3x-6则,x=-2时,f'(x)=0当x>-2时,f'(x)<0,f(x)递减;当x<-2时,f'(x)>0,f(x)递增.此时无法满足条件(ii)...