自然数n加行2后是一个完全平方数,减去1后也是个完全平方数,求证自然数n满足条件4n-n^2-3>0

问题描述:

自然数n加行2后是一个完全平方数,减去1后也是个完全平方数,求证自然数n满足条件4n-n^2-3>0

n+2为完全平方数设为a^2,同样n-1设为b^2,于是a^2-b^2=(a+b)*(a-b)=n+2-(n-1)=3,由于a,b均为自然数,所以有a+b=3,a-b=1,解得a=2,b=1,于是n=2,代入可知4n-n^2-3=4*2-2*2-3=1>0,成立