已知数列{an}满足a1=2,an+1=an-1n(n+1)(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn=nan•2n,求数列{bn}的前n项和sn.

问题描述:

已知数列{an}满足a1=2,an+1=an-

1
n(n+1)

(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=nan•2n,求数列{bn}的前n项和sn

(Ⅰ)由an+1=an-1n(n+1)移向得an+1-an=-1n(n+1)=1n+1−1n当n≥2时,an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=(1n−1n−1)+(1n−1−1n−2)+…+(12−11)+2=1n+1.当n=1时,也适合上式,所以数列{an}的通...
答案解析:(Ⅰ)由an+1=an-

1
n(n+1)
移向得出an+1-an=-
1
n(n+1)
=
1
n+1
1
n
,再利用叠加法求通项.
(Ⅱ)(Ⅱ)bn=nan•2n=(n+1)•2n,根据通项公式特点:等差数列和等比数列的乘积,利用错位相消法求和.
考试点:数列的求和.
知识点:本题考查数列通项公式求解,数列求和,考查了裂项、叠加,错位相消法在数列问题中的应用体现.