现将连续自然数1至2004按图中方式排成一个长方形阵列,用一个正方形框出16个数(如图)(1)图中框出的16个数的和为( ).(2)若在图中框出一个正方形,使16个数这和分别等于2000和2009,是否可能?若不可能,是说明理由;若有可能,请求出16个数中的最小数和最大数.1 2 3 4 5 6 7 8 9 10 11 12 13 14 框出的16个数为10 11 12 13 17 18 19 20 24 15 16 17 18 19 20 21 25 26 27 31 32 33 3422 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 ..2003 3004 2005 2006 2007 2008 2009

问题描述:

现将连续自然数1至2004按图中方式排成一个长方形阵列,用一个正方形框出16个数(如图)
(1)图中框出的16个数的和为( ).
(2)若在图中框出一个正方形,使16个数这和分别等于2000和2009,是否可能?若不可能,是说明理由;若有可能,请求出16个数中的最小数和最大数.
1 2 3 4 5 6 7
8 9 10 11 12 13 14 框出的16个数为10 11 12 13 17 18 19 20 24
15 16 17 18 19 20 21 25 26 27 31 32 33 34
22 23 24 25 26 27 28
29 30 31 32 33 34 35
36 37 38 39 40 41 42
.
.
2003 3004 2005 2006 2007 2008 2009

设方框中 左上角的数为n
则选择的方框中有
n n+1 n+2 n+3
n+7 n+8 n+9 n+10
n+14 n+15 n+16 n+17
n+21 n+22 n+23 n+24
所以加起来等于16n+192 令其等于分别等于2000 和 2004,得
16n+192=2000
16n+192=2004
得出n=113 或n=113.25 因为n为整数 所以等于2000时候可能 ,2004时候不可能
又∵113/7=16余1,是第16行第一个数,符合要求此时最小数为113,最大数为137

(1)设框出的正方形左上顶点是a,其中a=1+7n或2+7n或3+7n或4+7n(其中n=0,1,2,...,283)框出的16个数的和就是(4a+6)*4+7*4*(1+2+3)=16a+192所以a=10时,框出的16个数和为16*10+192=352(2)令16a+192=2000得a=113 即a=1...