有依次排列的3个数:3,9,8,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之0分依次排列的3个数:3,9,8,对任意相邻的两个数,都用右边有的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,-1,8,这称为第一次操作;做第二次同样的操作后可产生另一个新数串:3,3,6,3,9,-10,-1,9,8---- 问:第100次操作后得到的数串比第99次操作后所得的数串增加的新数之和为什么第2次操作后得到的数串比第1次操作后所得的数串增加的新数之和为什么
问题描述:
有依次排列的3个数:3,9,8,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之0分
依次排列的3个数:3,9,8,对任意相邻的两个数,都用右边有的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,-1,8,这称为第一次操作;做第二次同样的操作后可产生另一个新数串:3,3,6,3,9,-10,-1,9,8----
问:第100次操作后得到的数串比第99次操作后所得的数串增加的新数之和为什么
第2次操作后得到的数串比第1次操作后所得的数串增加的新数之和为什么
答
有依次排列的3个数:3,9,8,对相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生新数串:3,6,9,-1,8,这称为第一次操作;做第二次同样的操作后,也可以产生一个新数串:3,3,6,3,9,-10,-1,9,8。继续依次操作下去,问:从数串3,9,8,开始操作100次以后所产生的那个新数串的所有数之和是多少?
答
总是8-3=5,证明如下:第1次操作后3,6,9,-1,8增加的新数为6,-1和为5.第2次操作后3,3,6,3,9,-10,-1,9,8比第1次操作后3,6,9,-1,8增加的新数之和为3,3,-10,9和为5.设第n次操作后为a1,a2,a3,a(n-1),an,我不用说你都知道a1...