如图,四边形ABCD中,AC、BD是对角线,△ABC是等边三角形,∠ADC=30°,AD=3,BD=5,则△ACD的面积为______.
问题描述:
如图,四边形ABCD中,AC、BD是对角线,△ABC是等边三角形,∠ADC=30°,AD=3,BD=5,则△ACD的面积为______.
答
知识点:此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.
如图,以CD为边作等边△CDE,连接AE,
∵△ABC与△CDE为等边三角形,
∴∠BCD=∠BCA+∠ACD=∠DCE+∠ACD=∠ACE,
在△BCD和△ACE中,
,
AC=BC ∠ACE=∠BCD CD=CE
∴△BCD≌△ACE(SAS),
∴BD=AE,
∵∠ADC=30°,
∴∠ADE=90°,
在Rt△ADE中,AE=5,AD=3,
根据勾股定理得:DE=
=4,
AE2−AD2
∴CD=DE=4,
则S=
AD•DC•sin30°=1 2
×3×4×1 2
=3.1 2
故答案为:3.
答案解析:如图,以CD为边作等边△CDE,连接AE,根据三角形ABC与三角形CDE为等边三角形,利用等边三角形的性质得到两对边相等,利用等式的性质得到夹角相等,利用SAS得到三角形BCD与三角形ACE全等,利用全等三角形对应边相等得到BD=AE,求出AE的长,由∠ADC+∠CDE=∠ADE=90°,得到三角形ADE为直角三角形,利用勾股定理求出DE的长,即为DC的长,在三角形ADC中,利用三角形的面积公式即可求出三角形ADC面积.
考试点:全等三角形的判定与性质;勾股定理.
知识点:此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.