如图,四边形ABCD中,AC、BD是对角线,△ABC是等边三角形,∠ADC=30°,AD=3,BD=5,则△ACD的面积为_.

问题描述:

如图,四边形ABCD中,AC、BD是对角线,△ABC是等边三角形,∠ADC=30°,AD=3,BD=5,则△ACD的面积为______.

如图,以CD为边作等边△CDE,连接AE,
∵△ABC与△CDE为等边三角形,
∴∠BCD=∠BCA+∠ACD=∠DCE+∠ACD=∠ACE,
在△BCD和△ACE中,

AC=BC
∠ACE=∠BCD
CD=CE

∴△BCD≌△ACE(SAS),
∴BD=AE,
∵∠ADC=30°,
∴∠ADE=90°,
在Rt△ADE中,AE=5,AD=3,
根据勾股定理得:DE=
AE2−AD2
=4,
∴CD=DE=4,
则S=
1
2
AD•DC•sin30°=
1
2
×3×4×
1
2
=3.
故答案为:3.