已知|M+4|+n^2-2n+1=0 把多项式(x²+4y²)-(mxy+n)分解因式已知|m+4|+n^2-2n+1=0 把多项式(x²+4y²)-(mxy+n)分解因式
问题描述:
已知|M+4|+n^2-2n+1=0 把多项式(x²+4y²)-(mxy+n)分解因式
已知|m+4|+n^2-2n+1=0 把多项式(x²+4y²)-(mxy+n)分解因式
答
|m+4|+n^2-2n+1=|m+4|+(n-1)^2=0 即m=-4, n=1
多项式即为(x²+4y²)-(-4xy+1)=x²+4y²+4xy-1=(x+2y)^2-1
答
|m+4|+n^2-2n+1=0
|m+4|+(n-1)²=0
m+4=0,m=-4
n-1=0,n=1
(x²+4y²)-(mxy+n)
=(x²+4y²)-(-4xy+1)
=x²+4y²+4xy-1
=(x+2y)²-1
=(x+2y+1)(x+2y-1)
答
|M+4|+n^2-2n+1=0
|M+4|>=0,n^2-2n+1=(n-1)²>=0
M+4=n-1=0
m=-4,n=1
(x²+4y²)-(mxy+n)
=x²+4y²+4xy-1
=(x+2y)²-1
=(x+2y+1)(x+2y-1)