在P是直角梯形ABCD所在平面外一点,PA⊥平面ABCD,∠BAD=90°,AD∥BC,AB=BC=a,AD=2a,PD与底面成30°角,BE⊥PD于E,求直线BE与平面PAD所成的角.

问题描述:

在P是直角梯形ABCD所在平面外一点,PA⊥平面ABCD,∠BAD=90°,AD∥BC,AB=BC=a,AD=2a,PD与底面成30°角,BE⊥PD于E,求直线BE与平面PAD所成的角.
作业帮

∵PA⊥平面ABCD,∴∠PDA为PD与底面所成的角,PA⊥AB.∵∠BAD=90°,∴AB⊥AD.再由PA∩AD=A,可得AB⊥平面PAD,AE是BE在平面PAD内的射影,∴∠BEA为BE与平面PAD所成的角.∵BE⊥PD,∴AE⊥PD,在Rt△PAD中,∠PDA=...
答案解析:先证明AB⊥平面PAD,可得∠BEA为BE与平面PAD所成的角.根据条件解直角三角形ABE,求得∠BEA的大小.
考试点:直线与平面所成的角.
知识点:本题主要考查直线和平面垂直的判定定理、性质定理的应用,直线和平面所成的角的定义和求法,找出直线和平面所成的角,是解题的关键,属于中档题.