已知等差数列{an}的各项均为正数 求证:1/(√a1+√a2)+1/(√a2+√a3)+……+1/(√an-1+√an)=(已知等差数列{an}的各项均为正数 求证:1/(√a1+√a2)+1/(√a2+√a3)+……+1/(√an-1+√an)=(n-1)/(√a1+√an)
问题描述:
已知等差数列{an}的各项均为正数 求证:1/(√a1+√a2)+1/(√a2+√a3)+……+1/(√an-1+√an)=(
已知等差数列{an}的各项均为正数 求证:1/(√a1+√a2)+1/(√a2+√a3)+……+1/(√an-1+√an)=(n-1)/(√a1+√an)
答
1/(√an-1+√an)=(√an-1-√an)/(√an-1+√an)(√an-1-√an)=-1/d(√an-1-√an) d为等差数列{an}的的公差左边=-1/d(√a1-√a2+√a2-√a3+……+√an-1-√an) =-1/d(√a1-√an) =(√an-√a1)/d ...