证明:如果A的K次方等于0,则E-A的逆矩阵等于E+A+A的2次方一直加到A的K-1次方?

问题描述:

证明:如果A的K次方等于0,则E-A的逆矩阵等于E+A+A的2次方一直加到A的K-1次方?

即证:(E-A)(E+A+A^2...+A^(k-1))=E
左式展开=E*(E+A+A^2...+A^(k-1))-A*(E+A+A^2...+A^(k-1))
=E-A^k
当A^k=0时,左式=E