已知函数f(x)=2coswx(sinwx-coswx)+1(w>0)的最小正周期为π(1)求函数f(x)的图像的对称轴方程和单调递减区间(2)若函数g(x)=f(x)-f(π/4-x),求函数g(x)在区间【π/8,3π/4】上的最小值和最大值
问题描述:
已知函数f(x)=2coswx(sinwx-coswx)+1(w>0)的最小正周期为π(1)求函数f(x)的图像的
对称轴方程和单调递减区间(2)若函数g(x)=f(x)-f(π/4-x),求函数g(x)在区间【π/8,3π/4】上的最小值和最大值
答
f(x)=2coswx(sinwx-coswx)+1(x)=2coswxsinwx-2coswxcoswx+1=2coswxsinwx-(2coswxcoswx-1)=sin2wx-cos2wx=√2sin(2wx-π/4)周期T=2π/(2w)=π 得w=1对称轴方程2x-π/4=kπ+π/2x=kπ/2+π3/4 k为整数单调递减区间 2k...