已知sin(π-θ)-cos(π+θ)=1/5,0
已知sin(π-θ)-cos(π+θ)=1/5,0
已知=sinθ+cosθ=1/5
(sinθ+cosθ)2=1/25,sinθcosθ=-12/25
(sinθ-cosθ)2=1/25-4sinθcosθ
=49/25 ∵0(1)原式=(sinθ-cosθ)(sin^2θ+cos^2θ+sinθcosθ)
=7/5*(1-12/25)
=91/125
(2)原式=sinθcosθ/(sin²θ+cos²θ)=-12/25,tanθ/(tan²θ+1 )=-12/25,
写得好辛苦。。。
(1)sin(π-θ)=sinθ,cos(π+θ)=-cosθ,
由sin(π-θ)-cos(π+θ)=1/5,
得sinθ+cosθ=1/5,两边平方,
sin²θ+cos²θ+2sinθcosθ=1/25,
sin²θ+cos²θ=1,则sinθcosθ=-12/25
0(sinθ-cosθ)²=sin²θ+cos²θ-2sinθcosθ
=1-2*(-12/25)=49/25,
sinθ-cosθ=7/5.
sin^3θ-cos^3θ
=(sinθ-cosθ)(sin²θ+sinθcosθ+cos²θ)
=7/5*(1-12/25)
=91/125.
(2)sinθcosθ=-12/25,即sinθcosθ/(sin²θ+cos²θ)=-12/25,
左边的分子,分母都除以cos²θ,得
tanθ/(tan²θ+1 )=-12/25,
解得tanθ=-4/3,或tanθ=-3/4.
sin(π-θ)-cos(π+θ)=1/5
所以sina+cosa=1/5
1+2sinacosa=1/25
sinacosa=-12/25
sin(π-θ)=sinθ,cos(π+θ)=-cosθ,
sin(π-θ)-cos(π+θ)=1/5,
得sinθ+cosθ=1/5,两边平方,
sin²θ+cos²θ+2sinθcosθ=1/25,
sin²θ+cos²θ=1,则sinθcosθ=-12/25
0