帮助解一下:已知函数f(x)=sin^2x-2sinxcosx+3cos^2x,x属于R,求函数f(x)的最大值和最小正周期.
帮助解一下:已知函数f(x)=sin^2x-2sinxcosx+3cos^2x,x属于R,求函数f(x)的最大值和最小正周期.
f(x)=(sinx)^2-2sinxcosx+3(cosx)^2
=1-2sinxcosx+2(cosx)^2
=cos2x-sin2x+2
=√2cos(2x+π/4)+2
T=2π/2=π
f(x)的最大值是2+√2,最小值是2-√2
f(x)=sin^2x-2sinxcosx+3cos^2x
=sin^2x-sin2x+3cos^2x
=sin^2x+cos^2x+(2cos^2x-1)+1-sin2x
=1+cos2x+1-sin2x
=2+√2sin(2x+π/4)
所以f(x)的最大值2+√2 最小正周期T=2π/w=2π/2=π
Sin2x-2sinxcosx+3cos2x
=2cos2x-2sinxcosx+1
=cos2x-sin2x+2
=√2 sin(2x+0.75π)+2
最大值2+根号2,最小正周期为π
f(x)=sin^2x-2sinxcosx+3cos^2x
=1-sin2x+2cos^2x
=1-sin2x+cos2x+1
=2+√2cos(2x+45°)
∴最小正周期T=2π/2=π
cos(2x+45°)=-1时,为最小值=2-√2
cos(2x+45°)=1时,为最大值=2+√2
f(x)=sin^2x-2sinxcosx+3cos^2x
=1-sin2x+(1+cos2x)
=2-√2sin(2x-π/4)
f(x)的最大值=2+√2
最小正周期:T=π
f(x)=sin^2x-2sinxcosx+3cos^2x=sin^2x - sin^2x + 3cos^2x =3 cos ^2x
所以函数的最大值就是3,最小正周期就是π。
这个有点简单了吧,你确认没打错!如果错了,补充下,我再来回答!
希望采纳!
f(x)=sin²x-2sinxcosx+3cos²x
=(sin²x+cos²x)-2sinxcosx+2cos²x
=1-sin2x+cos2x+1
=√2(√2/2cos2x-√2/2sin2x)+2
=√2cos(2x+π/4)+2
则f(x)的最大值为2+√2,最小正周期为π